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Catalytic, Enantioselective Addition of Substituted Scheme 1
Allylic Trichlorosilanes Using a Rationally-Designed o OH
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The enantioselective addition of allylmetal reagents to alde- 1d:R' = Me, R? = Me

hydes is an often-employed and powerful method for stereose- (RR)-3

lective carbor-carbon bond formatioh. The overwhelming

majority of examples that operate catalytically are chiral Lewis chlorosilané An important consequence of this duality is that
acid-promoted additions of allylic silanes and stannanes which the rate of the more selective “two-phosphoramide” pathway
often proceed with excellent enantioselectivityowever, these decreases as [cat]Thus, at catalytic loadings, the rate and
transformations are less useful for the introductiop-stibstituted selectivity (due to the intervention of the one-phosphoramide
allylic species, because the open-transition structure characteristigathway) of the addition are adversely affected. This problem
of these reactions does not allow for controlled diastereoseléction. was addressed by utilizing bisphosphorandeith the expecta-

A mechanistically distinct approach that addresses the problemtion of increasing the effective concentration of the second catalyst
of relative diastereocontrol is the Lewis base-promoted addition molecule through proximity (Chart 1). A systematic investigation
of allylic trichlorosilanes to aldehydég.In 1994, the first exam- of the tether revealed that bisphosphoramde(in which the
ples of catalytic enantioselective addition of allylic trichlorosilanes  two base functions are separated by a five-methylene unit) was
to aldehydes by the use of chiral phosphoramides was reportedable to provide a higher, yet still modest ee (72%).
from these laboratories (Scheme®1$ince then, a number of
groups have reported enantioselective additions promoted by chiralChart 1
phosphoramide%,® formamides®d N-oxides’® ureas’ and di- CHs CH
amines’9 Despite significant efforts at empirical optimization of ,{, 0 o ,{Ihg Sa: n=
the enantioselectivity, a highly selective and reactive catalyst has U P ,(CH2)n N4 O 5c: n=
yet to be discovered. Herein, we report the design and implemen- ""}l N N N 5e:n=
tation of a new 2,2bispyrrolidine-based bisphosphoramide that CHs S CHs Ch,

catalyzes the addition of many kinds of allylic trichlorosilanes to
H““ O. /
P\ /(CHz)n\N

O‘JAI\J

aldehydes with excellent diastereo- and enantioselectivity. We
also report the first examples of catalytic, enantioselective
construction ofquaternary carbon centersy this technology.
Mechanistic studies on the allylation promoted by phosphor-
amide3 indicated that the reaction can proceed by two pathways
involving either one or two phosphoramides bound to the
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DF Crevi alvimetal addit @D s E Further modifications of the catalyst structure focused on the
or recent reviews ol allyimetal adaditions see: (a enmark, S. k. : H : : : : : i
Almstead, N. G. I'Modern Carbonyl ChemistnOtera, J., Ed.; Wiley-VCH: eva}luatlon of dimeric phosphoram|de§ W|th various chiral di
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Carbonyl ChemistryOtera, J., Ed.; Wiley-VCH: Weinheim, 2000; Chapter  that have served well in other processes were largely ineffective

11. (c) Stereoselecte Synthesis, Methods of Organic Chemistry (Houben- 9 ; ; i ;
Weyl) Edition E21: Helmchen, G., Hoffmann, R., Mulzer. J.. Schaumann, here? To refine our understanding of the origin of asymmetric

E., Eds.; Thieme: Stuttgart, 1096; Vol. 3, pp 138%02. (d) Yamamoto, induction and assist in the design of more selective catalysts, we
Y.;(é)sgo, N.Chem. Re.f19L‘33 93, 22_(?7. wivzed allvimetal addi utilized SnC} as a surrogate for silicon to study the complexation
or a review o ewIS acid-catalyzed allylmetal adaitions see: i i i i i -
Yanagisawa, A. InComprehensie Asymmetric Catalysislacobsen, E. N., of a bisphosphoramide to a lzleWIS acfdExamination Qf the.).( ray
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1995 117, 6210. orientation of the N-substituents and thus impose a more highly

(4) (a) Sakurai, HSynlett1989 1. (b) Sakurai, H. IrProceedings of the . . L . . B
5th International Kyoto Conference on New Aspects of Organic Chemistry dissymmetric coordination environment. This notion of backbone-

Yoshida, Z.-I., Ohshiro, Y., Eds.; Kodansha Press: Tokyo, Japan, 1992; pp induced nitrogen distortion is presented in Figure 1b,c, and thus

129-157 and references therein. (c) Kira, M.; Zhang, L.; Kabuto, C.; Sakural
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(5) () Kobayashi, S.; Nishio, KTetrahedron Lett1993 34, 3453. (b) B . . o .

Kobayashi, S.; Nishio, KSynthesi€1994 457. (c) Kobayashi, S.; Nishio, K. We were delighted to find that the dimeric bisphosphoramides

J. Org. Chem1994 59, 6620. For additions to hydrazones, see: (d) Kobayashi, —Ci i ° ith i
S.; Hirabayashi, RJ. Am. Chem. S0d.999 121, 6942. For propargylation, 6a—c induced the allylation of benzaldehyde-a8 °C with just
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Table 2. Allylations Catalyzed by6b?

R'\_~_-SiCl3 /loL 6b, CH,Cl,, i-ProNEt e
W + RFH ——— > R X

R -78°C, 8-10h i g2
s T 1 2 1 2
T o 1a: R'=H, R°=H; 1b: R'=Me, R°=H; 4
H N, O q\l | / 1c: R1=H, R2=Me; 1d: R1=Me, R2=Me.
SR Y
k) =
N N entry silane’ R yield, % syn/anfi ee, %
b c 1 la  Ph 85 a7

"\Irans/' 2 la 2-naphthy| 92 89
. o . ) 3 la 4-CH;OCeH4 84 88
Figure 1. (a) Chem 3D image dsd-SnCl. Most hydrogens removed for clarity. 4 1a 4-CR;CgHa 79 8¢
(b) Nitrogen distortion in the hypothetical complex of phosphoram@i@s(c) 5 la gE?-CeH50H=CH 86 8F
Front view. 6 la -furyl 59 8r
7 1b Ph 82 1/99 86
compared to the bisphosphoramiéesand6c with different tether 8 %B E)E?a(ﬂﬂ? L|=CH 5873 1%999 8801
lengths and the monophosphoramitdi€Table 1)* The strong 10 lc h 89 99/1 94
cooperativity of the dimers and enhanced selectivity 6bf o i:g?_@rc‘}afl'_h o8 ot
compared to7 support the hypothesis of a two-phosphoramide ﬁ %c 4Iéc('::30|—f|_(|§H o gg ggﬁ %%
athway. c -CeHsCH=
C -LeRsCR=
P y 15 1 éEi CgHsCH=C(CHg) 62 95/5 92
) . 16 1c -furyl 82 99/1 95
Table 1. Allylation of Benzaldehyde withia Catalyzed by 17 1d Ph 89 96
2,2-Bispyrrolidine-Derived Phosphoramides 18 1d gE?-C5H5CH=CH 70 88
" 19 1d -furyl 71 95
entr catalyst ee, % ield, %
Y Y Y aReactions done at78 °C for 8—10 h with 5 mol % of6b. ? 1b and
1 6 18 54
> 63 87 85 1cboth>99/1 isomerically pure byH NMR analysis.c Determined byH
3 6c 67 58 NMR (400 or 500 MHz) analysis! Determined by CSP-SFC or chiral CSP-
4° 7 56 56 GC. ¢ Absolute configuration assigned by comparison to the literature value

of optical rotation; see Supporting Information.
2 All reactions run at 1.0 M concentration in GEl»/i-PrNEt, 1/1 at ; ; ; ;
—78°C for 8 h, using 5 mol % catalyst. Determined by CSP-SFC. 20 and nerol, respectively, in geometrically pure form in two sf&ps.

mol % catalyst was used. The catalyzed addition of these agents to benzaldehyde provided
adductsanti-9 and syn9 with excellent diastereo- and enantio-
With an efficient Cata|yst in hand, we exp|ored the scope of Select?VitieS (SCheme 2) S_ince tj?le:llsubstltuted a||y|IC alCOhOlS
the allylation with various aldehydes (Table 2). Aromatic, hetero- are widely accessible, this method represents a versatile route
aromatic, and unsaturated aldehydes underwent allylation in goodfor the construction of quaternary stereogenic ceriters.
yields and selectivities (Table 2, entries@). However, the more

/ ; . . Scheme 2

important demonstration of scope was in the extension to the reac-

tions of y-substituted allylic trichlorosilanes. The additions Bf " M oH

or (2)-2-butenyltrichlorosilaneslp and1c) are known to be high- g g PhCHO, 6b (10 mol %) Ph)%\
ly diastereoselective and the results with were no exception Me SiCl3 CH,Cl,, i-ProNE, -78 °C Me
(entries 716). The proposed chairlike transition structure for syn/anti, 1/99; ee 94% M }
these additions is apparently operative as reflected in the excellent Es8 yield 83% antid
correlation of geometrical purity of the silanes with the diaster- OH
eomeric composition of the products {~ anti; Z — syn). The Me Me PhCHO, 6b (10 mol %)

Ph

results in Table 2 show clearly thdt leads to much higher N § T
enantioselectivity compared th. Furthermorey-disubstituted 20k HPINEL, 78
SiCl, Syn/anti, 98/2; ee 98%

allylic trichlorosilaneld also reacted under these conditions to 78 .
. . . p - yield 78%
provide prenylation products with excellent selectivity (Table 2,

entries 1719). Apparently, theZ-substituent on the allylic tri- In summary we have developed a highly efficient bisphos-

chlorosilane has a beneficial effect as evidenced by the highly - . h -
selective syn-butenylation and prenylation processes. Further, elecP horamide catalyst (derived from readily availabRR)-2,2-

tron rich aldehydes seemed to react with higher enantioselectivitiesgizgﬁrrggg'n?%isfogattglesf‘g?fggne?f a:g’#&gfg:ggf;ﬁgfeso_tc;n d
compared to electron poor substrates (cf. entries 3 vs 4, 12 vs 13). yaes. y yp

. . . L enantioselective addition of varioug-substituted silanes to
prc;rrzit:g(t:)cyggifgée?ﬁgr \?\/Iigt]r?%ee:t?grtllgz(taelﬁgg\éﬁeerﬁjigg:ocglu(:)fli ng unsatu_rated aldehydes at Iov_v Ioa_dings and in high yield. F_urther
of geometry with diastereoselectivity (fab and10), suggested extension of ;he reaction to aliphatic &}Idehy.des.and the application
the opportunity to construct quaternary stereogenic céefiteys to problems in synthesis are under investigation.
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- - — - - Supporting Information Available: Full characterization of all
(12) The preparation 0RR)-2,2-bispyrrolidine was easily accomplished  ¢413ysts and products, procedures for the preparatiorR@%)-@,2-

on a large scale by photodimerization of pyrrolidine followed by resolution bi lidine 6a—6¢. 7. ()-8 and 2)-8. al ith | d

with tartaric acid; see Supporting Information. For photodimerization of DiSPyrrolidine,6a—6c, 7, (E)-8, and ¢)-8, along with a general procedure

pyrrolidine see: (a) Krajnik, P.; Ferguson, R. R.; Crabtree, Ruét J. Chem. for the addition reaction (PDF). This material is available free of charge

1993 17, 559. (b) Ferguson, R. R.; Boojamra, C. G.; Brown, S. H.; Crabtree, via the Internet at http://pubs.acs.org.

R. H. Heterocyclesl989 28, 121. For resolution of bispyrrolidine see: (c)

Oishi, T.; Hirama, M.; Sita, L. R.; Masamune, Synthesisl991, 789. For JA016552E

alternative syntheses see: (d) Alexakis, A.; Tomassini, A.; Chouillet, C.;

Roland, S.; Mangeney, P.; Bernardinelli, @ngew. Chem., Int. Ed. Engl. (14) For a review on catalytic enantioselective construction of quaternary
200Q 39, 4093. (e) Kotsuki, H.; Kuzume, T.; Ghoda, H.; Fukuhara, M.; Ochi, centers see: Corey, E. J.; Guzman-PerezAAgew. Chem., Int. Ed. Engl.
M.; Oishi, T.; Hirama, M.; Shiro, MTetrahedron: Asymmetrd995 6, 2227. 1998 37, 388.

(13) It is interesting to note that the X-ray structuresdfSnCl, also reveals (15) The absolute configuration of the products was assured by X-ray

the probable basis for the superiority of the ({gHether in that the methylenes crystallography of the 4-bromobenzoate derivative of the addud)e (vith
can occupy a nicely staggered syn-pentane alignment. 2-naphthaldehyde, see Supporting Information.



